If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+24x+12=0
a = 4; b = 24; c = +12;
Δ = b2-4ac
Δ = 242-4·4·12
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{6}}{2*4}=\frac{-24-8\sqrt{6}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{6}}{2*4}=\frac{-24+8\sqrt{6}}{8} $
| (x^2+8x-16)=14 | | 8×-5y+12=0 | | 3-8(2x-1)+9=-36 | | 3+9(x+5)=33 | | (3x+4)+2=14 | | 3x2+10x=0 | | 6/22=11/x | | M2+8m+25=0 | | x-4=2x+40 | | 2x^2+(2x+1)^2=(3x-1)^2 | | 2x^2-4x-153=0 | | u/11=8/13 | | 15q−5q=20 | | 15x=-7=1+13x | | 2x(3)-4=246 | | -67+2=-4(2y+2) | | 138=7x-2 | | -12+39=-3(x+4) | | 2*(-7+3x)=5-(x+2) | | 2x(-7+3x)=5-(x+2) | | 3d+5=2d+12 | | 9g−3g=6 | | 6x-5=20+2 | | -c+2=26 | | 2m+7/9=3m-2/6 | | 5x·x+8x=13 | | X^4+12x=208 | | xx8=24 | | 8/y+4y=-12 | | 8-(2y-4)=5-3y | | 2-12=x/8 | | -15(z+2)+5(4z-5)=4(z-3)+11 |